PIVOT TRANSFORMS

ANNEX 1

TANGENT PLANES TO SURFACES

If a surface is defined by two parameters u,v i.e.

x=x(u,v)

y=y(u,v)
z=z(u,v)

and (x,y,z) is the tangent point of a plane while (&, n, {) are the coordinates of a variable point in that plane
then the plane is given by the equation
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where e.g.

(c.f. for example Partial Differentiation by R.P. Gillespie).

If (x,y,2)=(0,0,0) then
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which gives a plane through the origin parallel to the tangent plane with the determinants as its plane
coordinates.

It follows that the direction cosines of the normal to the surface at (X,y,z) are proportional to

We select the parameters u,v as follows

u = the vertical height of G above O (see main text)
v = the height h of the contour plane.

Then from (13) in the main text we have



}’(M,V)_l+m2
x(u,v)=—my(u,v)
z(u,v)=v

noting that a+b=e+c=1 (c.f. Figure 9).

Since b=h’ and a=1-b, and recalling (11) and (12), we have
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The following partial derivatives are then obtained:
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We now require dm/du and dm/dv which requires us to find a suitable expression for m. Referring to
Figure 9 let the equation of the tangent to the circle be y=mx+q. Then since it contains (x3,y;) we have
V3 = mX3+q.

It intersects the circle x*+y*-2xx,-2yy;+(x,*+y,*-R*=0 in the points given by

(mx+q)*+x2-2xx;-2y; (mx+q)+(x,*+y,>-R?)=0



which may be rearranged as a quadratic equation in x:
x*(m*+1)+2x(mg-y m-x,)+(q*2y,q+x,*+y,-R*)=0
Setting the descriminant to zero to give us equal roots (for a tangent) we find
m’(R%-x)+2mx, (y1-q)+R*+2qy:-y,*-q*)=0
Substituting q=y;-mx; and simplifying gives
M’ [R*-(X1-X3)”[+2m(X1-X3) (Y 1-ys)+R*-(y1-y3)*=0

which is a quadratic equation in m for the two tangents to the circle in Figure 9, in terms of known
quantities. Noting that x; and y, are constant we obtain from this
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All the subsidiary partial derivatives are given above except dR/du, which needs to be derived from an
expression for R which is independent of m, and determined by the vortex.

In the main text we saw that R is given by
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and differentiating wrt u gives
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Now we can find the partial derivatives of X, y and z wrt u and v:
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This gives us what we need to calculate
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